Math Contest #14 Results and Solution


Solution

The problem of this contest was again a set of 2 equations:
Screenshot from 2019-10-01 17-29-45.png
Apart from the obvious solution (0, 0, 0) there is also an infinite number of other solutions:
1: x² + y² = z²
2: z = x² + yx² = z - y
x² in 1: y² - y + z = z²y² - y + z -z² = 0
→ 3:y = ½ ± √(¼ + z² - z)
(z-½)² = z² -z + ¼ in 3: y = ½ ± (z - ½)
→ Either y = z(this leads to x = 0) or y = 1-z:
y in 2: z = x² + 1 - zx² + 1 = 2z
For z to be an integer x² and therefor x need to be odd:
x = 2n + 1, n is any integer.
→ z = 2n² + 2n + 1
→ y = -2n² - 2n
So the solutions are:
(0, n, n), (2n + 1, -2n²-2n, 2n²+2n+1), n is any integer.
↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

What is your chance of winning:

p(You Win) = 1/n, n = number of entries

↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

List of participants with their entries:

Name solutions found comment
@tonimontana Only one of the general solutions You found the trivial case of y=z, but not the general case.

↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

Winner draw:

not needed

Congratulations @tonimontana, you won 1 SBI!
↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓

The next contest starts tomorrow. Don't miss it!


Comments 3


Hi @quantumdeveloper, a small upvote and a tip.
$trendotoken
Thanks for playing the ADDAX trading game!

04.10.2019 10:51
2

Congratulations @addax, you are successfuly trended the post that shared by @quantumdeveloper!
@quantumdeveloper got 0.14652000 TRDO & @addax got 0.09768000 TRDO!

"Call TRDO, Your Comment Worth Something!"

To view or trade TRDO go to steem-engine.com
Join TRDO Discord Channel or Join TRDO Web Site

04.10.2019 10:51
0

Thanks!

04.10.2019 13:36
8