Автоэнкодер в задачах кластеризации политических событий


Автор: Roaming
Источник: https://habrahabr.ru/post/349048/
image
Я не люблю читать статьи, смотрю demo и кодДемо TensorBoard Projector

  1. Работает в Chrome.
  2. Открываем и нажимаем на Bookmarks в нижнем правом углу.
  3. В верхнем правом углу можем фильтровать классы.
  4. В конце статьи есть GIF картинки с примерами использования.

Проект на GitHub

Отступление от темыВ данной статье, пойдет речь о средствах машинного обучения, подходах и практических решениях. Анализ проводится на базе политических событий, что не является предметом обсуждения данной статьи. Убедительная просьба не поднимать тему политики в комментариях к этой статье.

Уже несколько лет подряд алгоритмы машинного обучения находят применение в различных областях. Одной из таких областей может стать и аналитика различных событий в политической сфере, например: прогнозирование результатов голосования, разработка механизмов кластеризации принятых решений, анализ деятельности политических акторов. В этой статье я постараюсь поделиться результатом одного из исследований в этой области.

Постановка задачи


Современные средства машинного обучения позволяют трансформировать и визуализировать большой объем данных. Этот факт позволил провести анализ деятельности политических партий путем трансформирования голосований за 4 года в самоорганизуемое пространство точек отображающее поведение каждого из депутатов.

Каждый политик самовыразился по факту двенадцати тысяч голосований. Каждое голосование может принимать одно из пяти вариантов (не пришел в зал, пришел но пропустил голосование, проголосовал “за”, “против” или воздержался).

Наша задача — трансформировать все результаты голосования в точку в трехмерном евклидовом пространстве отражающую некую взвешенную позицию.
Читать дальше →

Комментарии 0


Чтобы читать и оставлять комментарии вам необходимо зарегистрироваться и авторизоваться на сайте.

Моя страницаНастройкиВыход
Отмена Подтверждаю
100%
Отмена Подтверждаю
Отмена Подтверждаю